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Summary

A decision rule is said to be rational if it is consistent with maximising expected utility. Rational
decision rules can correctly accommodate objective and subjective criteria. It is shown that portfolio
theory, as applied to sire selection problems, is rational. However, the underlying utility function
must be linear or exponential and normality assumptions must hold. Explicit use of utility theory
and related Bayesian methodology is suggested for other selection problems. A mate selection rule
is described which is rational and consistent with the underlying reason for positive assortative

mating : to arrange future pedigree information by attempting to create extreme positive individuals.
The mate selection rule can be evaluated sequentially using mixed model methodology as this

provides for the reuse of information on preassorted relatives.

Key words : Bayesian methods, portfolio theory, positive assortative mating, mate selection, utility
theory.

Résumé

Théorie du portfolio, théorie de l’utilité, choix et accouplement des reproducteurs

Une règle de décision est dite rationnelle si elle est cohérente avec la maximisation de l’espérance
de l’utilité. Des règles de décision rationnelles peuvent en toute rigueur intégrer des critères objectifs
et des critères subjectifs. On montre que la théorie du portfolio, appliquée aux problèmes de
sélection et d’accouplement des reproducteurs, est rationnelle. Cependant, il faut que la fonction
d’utilité sous-jacente soit linéaire ou exponentielle et que les hypothèses de normalité soient vérifiées.
L’utilisation explicite de la théorie de l’utilité et de la méthodologie bayésienne est suggérée pour
aborder d’autres problèmes de sélection. On décrit une règle de sélection et d’accouplement des
reproducteurs qui est rationnelle et cohérente avec la motivation sous-jacente à l’homogamie positive :
organiser l’information généalogique de la génération à venir afin d’y créer des génotypes positifs
extrêmes. La règle de sélection et d’accouplement des reproducteurs peut être déterminée de façon
continue en utilisant la méthodologie du modèle mixte qui assure la réutilisation de l’information
sur des apparentés préalablement assortis.

Mots clés : Méthodes bayésiennes, théorie du portfolio, homogamie positive, sélection et accou-
plement des reproducteurs, théorie de l’utilité.



I. Introduction

Selection decisions, like most decisions, are affected by subjective beliefs or percep-
tions. Beliefs are subjective in that they are personal and may change from person to
person. Classical quantitative genetics has largely ignored subjectivity. However, the
importance of risk in applied genetics has been recognised (e.g., SCHNEEBERGER et al.,
1982 ; SMITH, 1985) despite the fact that concerns about risk are mostly subjective
(DILLON, 1977).

Risk exists with uncertainty and indeed DILLON (1977) uses the words risk and

uncertainty interchangeably. Conditions such as infinite population size or infinite repli-
cation tend to remove uncertainty. For example, with infinite populations the response
due to truncation selection is deterministic. Alternatively, the average response from
an infinite sequence of similar selection schemes is constant. It follows that concerns
about risk can be ignored under conditions of infinite population size or infinite repli-
cation. Risk can sometimes be ignored under conditions of equal information when
equal information implies equal uncertainty across all selection alternatives. In this
situation uncertainty is not removed but equalized.

While assumptions like infinite population size, infinite replication and equal infor-
mation are convenient they need not be realistic. Selection of replacement breeding
animals involves decisions by a person or persons on behalf of enterprises. Subjective
attitudes cannot generally be ignored. Moreover, because of subjective attitudes about
uncertainty, a unique and optimal decision will not usually exist for all decision-makers
given the same selection alternatives.

Concern about risk may be mistakenly regarded as purely objective ; due to a
belief that risk can be accommodated by :

1) extending the planning horizon

2) evaluating selection alternatives under condition of infinite replication.
Concern about drift in finite populations is sometimes quantified in this manner

(e.g., ROBERTSON, 1960). It may be reasonable to extend the planning horizon, but this
extension is liable to make the analysis very difficult. The above view is flawed because
infinite replication is a corruption even for long planning horizons.

Portfolio theory has been proposed as an aid to decision-making in dairy sire
selection (SCHNEEBERGER et al., 1982). The method is purported to allow for both risk
and objective criteria in the decision processes. Given that risk should be considered
in decision-making, is portfolio theory an appropriate tool to deal with both objective
and subjective criteria? In this paper we consider the issues and show that portfolio
theory can lead to rational decisions as defined by the Bayesian. Ramifications will be
discussed and we also show how generated theory can be applied to mate selection
problems.

II. Utility theory and the axioms of rational behavior

To determine if portfolio theory is indeed rational we need to appeal to a higher
realm of meaning ; utility theory and the axioms of rational behavior (BERGER, 1980).
Utility theory can be regarded as a component of Bayesian decision theory.



The goal of selection is to increase merit in some future population. This is

accomplished by choosing one of several possible selection alternatives (e.g. a group
of parents could be one selection alternative). In general, different selection alternatives
will induce different outcomes of merit.

Using the terminology of BERGER (1980), we will call a particular outcome of merit
a reward and denote it as r. Also, let the set of all possible rewards be denoted by
R. When selection decisions are made there is usually uncertainty about which r in R
will be realized. Let P;(r) represent the probability distribution function of possible
rewards for the i-th- selection alternative. The quantities, PI(r), P2(r)..., can be regarded
as posterior distributions given data, empirical experiences and subjective perceptions.
The distributions can be constructed using Bayesian methods (BERGER, 1980). In an
animal breeding context, SMITH & ALLAIRE (1985) show how to use mixed model
methodology to construct P;(r) under normality. We will not dwell on the construction
of P;(r) in this paper.

Given Pl(r), P2(r)..., preference among selection alternatives can be quantified in
accordance to rationality axioms (SHARPE, 1970 ; BERGER, 1980). The most desirable
selection alternative corresponds to the largest of :

where U(r) is an utility function defined by preference patterns. Thus, to be consistent
with rationality axioms, selection should maximise expected utility. To violate this rule
is to be what SHARPE (1970) calls &dquo;irrational&dquo; or &dquo;unthinking&dquo;. Were are interested in
finding out if a decision based on portfolio theory can be cast as a decision based on (1).

Many selection strategies in animal breeding are based on maximising the expectation
of r. For such cases U(r) is an identity operator. Because the goal of selection is to
maximise r, we can argue objectively that U(r) should be monotone increasing. However,
there is no theory that forces U(r) to be an identity operator. Some have argued
implicitly that U(r) = r due to infinite replication (e.g. BULMER, 1980). This argument
is esoteric when decisions are not replicated. Consider a decision to make one of two
choices, A or B. If we make A we are guaranteed $ 1 000. However, if we make B
we will do one of two things ; we might pay $ 1 000 with probability %5 or we might
be paid $ 3 000 with probability Ih. Most people would probably make the sure bet,
choice A. There might be a few gamblers that take choice B. The quantitative geneticist
who argues infinite replication is indifferent to the choices, because each has equal
expected rewards. Do we really want U(r) = r ?

Utility theory need not contradict classical selection theory. For example, selection
strategies are sometimes invariant to the shape of U(r) if U(r) is at least monotone

increasing and given equal uncertainty across all selection alternatives, i.e., equal accuracies
such as exist with mass selection. Usually, it is when classical assumptions break down
that we have contradictions. In general, U(r) will be affected by an individual’s gambling
philosophy and this will affect selection decisions.



III. Portfolio theory

A. Description

Only a segment of portfolio theory is investigated here ; that indicated by the
objective function described by SCHNEEBERGER et al. (1982).

With the approach of SCHNEEBERGER et al. (1982)

where w is a row vector of non-negative weights which sum to one (or a number less
than one) and s is a column vector of economic merits associated with sires. The vector
w will define the usage of sires in the breeding program. Different realizations of w
correspond to different selection alternatives. The goal of selection is to find w such
that r is maximum under certain constraints.

Given w and information on sires it is possible to compute the mean and variance
of r, as outlined by SCHNEEBERGER et al. (1982). Define

The subscript w is a reminder that the mean and variance are functions of w. With
the portfolio approach, w is chosen so as to maximise

where k is a constant that reflects an individual’s attitude about risk. When k is negative,
zero and positive the attitudes are described as risk aversive, risk neutral and risk
prone, respectively (SCHNEEBERGER et al. , 1982). Objective (2) is maximised subject to
linear and non-negativity constraints.

B. Accusation

Given the importance of utility theory, it is natural to suspect that past attempts
have been made to show the equivalence or non-equivalence of utility theory and
maximising (2). Indeed, NAYLOR & VERNON (1969, p. 420) claim that (2) can be equated
to expected utility. However, the proof which is found in FARRAR (1962, p. 20) seems
questionable. The derivation of FARRAR is based on expanding U(r) by a Taylor series
and taking expectation. A similar approximation of expected utility is given by ANDERSON
et al. (1977) and is

where U&dquo;(M,) is the second derivative of U(r) evaluated at r = Mw. We see no way
of equating (2) and the right side of (3). Moreover, it is easy to show that (2) cannot
equal the expectation of some utility function when k + 0 (see Appendix).

SHARPE (1970) argues that an utility function must be quadratic if it is to be consistent
with the concerns of those who would use portfolio theory, i.e. concerns about Mw
and V!. Though SHARPE recognizes the contributions of utility theory, he ultimately
discards it because a quadratic utility function implies an unrealist behavior. However,
we do not agree that concerns only with Mw and VW imply a quadratic utility function.
For example, when r is a normal random variable expected utility is an exclusive



function of the mean and variance and this result is independent of the utility function.
Thus, we regard the negative argument of SHARPE as an incomplete justification of
portfolio theory.

If maximising (2) is inconsistent with utility theory one might wonder how (2)
accommodates risk. If (2) is not expected utility what is it? A justification for the use
of portfolio theory exists and it is consistent with utility theory.

C. Acquittal

We construct a rational decision rule that is equivalent to the portfolio approach.
First we will design a monotone utility function, say U+(r), possessing and attribute
which seems reasonable from a portfolio outlook. There is a constancy about risk as
it is treated by (2) ; decisions based on (2) are invariant to location shifts of r. In fact,
location invariance is a major property from which significant results follow. The utility
function, U+(r), will be such that the resulting decision rule is invariant to location shifts.

The equation,

represents a statement of indifference. For any h and r a P (P s [0,1]) can be found
where (4) holds. Consider a decision to make one of two choices, A or B. If A is
made we will obtain r with probability one. If B is made we could obtain r + h with

probability P or we could obtain r &mdash; h with probability 1 &mdash; P. Equation (4) says that
values associated with gambles A and B are equal.

If the decision rule based on U+(r) is invariant to location shifts, then (4) must
hold for all r because statements of indifference are decisions. Thus, for any h (4)
holds for all r, where P is a function of h but not r. In the Appendix, we prove that
U+(r) can only be a linear or exponential function. ,

When U+(r) is strictly monotone increasing

b > 0, c > 0, depending on one’s approach to risk. It can be shown that the utility
functions given by (5.1), (5.2) and (5.3) produce decision rules which are invariant to
location shifts. These decision rules are also invariant to the constants a and b.

PRATT (1964) has derived (5.1), (5.2) and (5.3) from consideration of a function
(i.e., U’(r)/U&dquo;(r)) that depicts the degree of risk. PRATT referred to utility (5.1) as

concave and corresponding to a decision-maker with a constant aversion to risk. Likewise,
utilities (5.2) and (5.3) correspond to decision-makers with constant attitudes about risk
being risk neutral and risk prone, respectively. Note also that the parameter c in (5.1)
and (5.3) acts as a scale effect in quantifying risk.

The insistence that decisions should only be based on Mw and V!, as in portfolio
theory, suggests a strong preoccupation with normality. A distribution which possesses
only the first two cumulants is, by necessity, normal. A stronger argument is given in
the Appendix that supports the belief that r is treated as normal. Moreover, we will
see later that when r is not normal, decisions based on (2) can be irrational. One of
the shortcomings of previous use of portfolio theory is that distributional assumptions



are rarely made explicit. Normality seems to be an assumption, though SHARPE (1970)
gives a contrary view. All assumptions implied or otherwise should be highlighted so
that the feasibility of (2) can be assessed.

Assume that for any w, r has a normal distribution. If U+(r) equals (5.1), the
expected utility is

Now maximising (6) is tantamount to maximising

Likewise, maximising expectations of (5.2) and (5.3) are the same as maximising

respectively. We have clearly vindicated the proposal of SCHNEEBERGER et al. (1982).
A rational person involved in decision-making must act as if he had implemented

Bayesian machinery (e.g. a utility function). However, such a person need not have
carried out a Bayesian analysis (BERGER, 1980). That is, rational person could have
arrived at a decision in an indirect way. The portfolio approach can be considered an
example of an indirect process.

D. Ramifications

Having shown what maximising (2) implies, we can now ask the question ; are the
hidden assumptions justified? The hidden assumptions are :

1) Normality.
2) The utility function is a given by (5.1), (5.2) or (5.3).
It is not possible to categorically refute or support these assumptions as applied

to particular problems. We can only suggest what might happen when assumptions are
not satisfied and comment on what alternative procedures might be used.

When normality breaks down decisions based on (2) can be irrational. For example,
assume that k in (2) is - 0.05 (risk aversion). Now consider making one of two
decisions, A or B. If A is made a sure $ 100 is earned. If B is made $ 150 could be
earned with probability Ih or $ 300 could be earned with probability lh. Because variance
is penalised, A will be picked over B if (2) is used as a criterion. Yet no rational

person would ever pick A over B. Alternatively, if expected utility is used, B will
always be picked over A regardless of the risk philosophy, i.e. if the correct distributions
are used to evaluate expectations.

The practitioner may be unwilling to use one of the utility functions, (5.1), (5.2)
or (5.3). Alternative utility functions can be found in ANDERSOrv et al. (1977) and PRATT
(1964). Evaluating the expectation of a more general utility function could be done
with techniques described in SMITH & ALLAIRE (1985). Approximation (3) might also
prove to be useful.

There are other complications with the use of (2) that should be considered. Until
now, r has been taken as a univariate quantity. However, in practice r will typically
be multivariate. Decisions based on expected utility of multivariate r are at least

conceptually clear. However, a multivariate extension of (2) is not so obvious. Compli-



cations also occur when intermediate r is optimum. For this case, an appropriate utility
function is likely non-montone and use of (2) is inappropriate. Whereas decisions based
on (2) can be rational, the explicit use of utility theory and related Bayesian methods
offers greater flexibility.

Pure risk aversive attitudes (e.g. when k in (2) is negative) are sometimes doubtful
when long-term objectives are sought. An example where this is true is gene pool
selection. SMITH & ALLAIRE (1985) described the additive merit (a) of an individual
taken at random from some gene pool as : a = a, + a2, where a¡ equals the average
additive genetic effect of all base animals that contribute genes to the pool and a2 is
the additive genetic effect due to segregation in the random mating gene pool. We will
assume that it is desired to maximise long-term additive merit. In selecting &dquo;parents&dquo;
of the pool, a, and a2 should be considered separately. Practitioners are liable to have
a risk aversive attitude when considering the a¡ that would result from various selection
alternatives. However, a risk aversive attitude about a2 is unreasonable. Concerns about

long-term response imply that variance of a2 is desirable. This variance will tend to
decrease with increasing inbreeding (i.e., drift) in the gene pool. The reward of any
selection alternative may be taken as the vector (ai,v), where v is the variance of a2.
A selection alternative influences v as a function of the number of parents of each sex
and the relationships among the parents. Utility functions of (al, v) that might find
application and are risk aversive with respect to a, are represented by : U(a¡, v) =
- exp {- cal - f(v)} where c > 0 and f(.) is monotone increasing. There may be some
breeders who are risk prone with respect to at. For them, utility functions of the form
U(al, v) = exp{cal + f(v)} may be useful. Breeders who are risk neutral with respect
to a, might try a¡ + f(v). These three classes represent all rational decision rules which
are : unaffected by shifts in the genetic base ; and consistent with maximising a¡ and v.

Consider the vector of weights, w, defined for the portfolio approach and let it

represent the proportion of genes that various parents contribute to the gene pool.
Given the assumption of panmixia, the genomic table described in SMITH & ALLAIRE

(1985) can be manipulated to show that v = a2 (1 - 1h w’Aw), where a2 is the additive

genetic variance and A is the relationship matrix for parents. If it is desired to calculate
w so as to maximise expected utility where U(al, v) _ - exp {- cat - dv}, exp fcal
+ dv} or a, + dv, d > 0, then objective (2) can be used by adding &mdash; bw’Aw, where
b = (d az)/(2c) or d (J’2. The modified objective function is still a quadratic function in
w and hence quadratic programming can be implemented to find the optimum w. For
other problems, selection alternatives may be associated with uncertain w. This situation
is harder but we might take advantage of the relation E[w’Aw] = tr[A(qq’ + Q)], where
q = E[w] and Q = Var(w).

In the next section we describe applications of utility theory with mate selection.
In particular we describe a rational objective which is consistent with the underlying
reason for positive assortative mating. Unlike concerns about risk, the philosophy behind
positive assortative mating can be justified under conditions of infinite replication.
Indeed, concerns about risk appear to be opposite to this philosophy.

IV. Mate selection

Mate selection is defined as the selection of parents and the formation of mating
pairs (ALLAIRE, 1980 ; SMITH & ALLAIRE, 1985). ALLAIRE (1980) has suggested that
non-random mating practices imply a non-linear objective.



Mate selection was originally proposed as a method to enhance the value of

replacement animals where value is determined by a non-linear merit function. However,
here we consider the improvement of additive genetic merit rather than with non-linear
merit. The formation of special mating pairs will do little to enhance the average
additive merit of the progeny produced by those matings. However, if the objective of
selection is to enhance average merit after several generations, mate selection is a useful
tool. We may infer that this objective is non-linear.

Selection and positive assortative mating is an example of a mate selection rule
that can enhance long-term additive merit. Selection works directly to increase merit
in the progeny. Position assortative mating works to increase heritability in the progeny
and thus the merit in the second generation. McBRIDE & ROBERTSON (1963) have
demonstrated that selection coupled with positive assortative mating can lead to a greater
selection response than selection with random mating. Combined selection and assortative
mating is beneficial when heritability is high, selection intensity is low and the trait is

polygenic (DE LANGE, 1974). BAKER (1973) claimed that assortative mating will increase
response to selection by no more than 4 or 5 p. 100 in most situations. This assessment
is based on populations where the fraction selected is 20 p. 100 or less. We agree with
BAKER but note his figures are underestimated by as much as two percentage units
because selection response was assumed proportional to the genotypic standard deviation.
This is only so when heritability is close to one. When heritability is close to zero,
response is proportional to the genotypic variance. A final point of contention is that
BAKER implicitly assumed normality in the offspring of selected parents. The appropria-
teness of this assumption needs to be investigated when heritability is high and when
parents are mated assortatively.

Early studies on combined selection and assortative mating seem to imply that
assortative mating is done to enhance selection response by increasing heritability in
the progeny. For example, BAKER (1973) evaluated assortative mating under conditions
of mass selection, which is reasonable if heritability is the primary concern. However,
we suggest that there are good reasons to consider different selection schemes and in
particular use of a selection index that incorporates information on preassorted relatives.
Heritability needs not be the sole concern.

Let Ip denote a set of records on parents and let C specify the way parents are
mated. For example, C indicates the mating pattern such as assortative mating or a
realization from a random mating scenario. Let C = Ca when parents are selected and
mated assortatively on Ip. Then, conditional on Ip U Ca where U is the union operator,
all other aspects of assortative mating are redundant. On the average, assortative mating
causes an increase in the additive genetic variance of progeny compared to cases when
C denotes random mating. Indeed, assortative mating differentiates progeny so that
some progeny are more desirable than others and the estimated rank order can be
determined from Ip U C’.

Let 10 denote a set of records on offspring of the parents previously described.
To carry out mass selection on progeny we can use the information 10 U Ca. However,
because of sampling the rank order estimated from Io U Ca will not be the same as
the rank order estimated from Ip U C,,. As the rank orders become less alike the prior
differentiation of progeny becomes more superfluous and at the limit assortative mating
will show no advantage. The appropriate thing to do is to use all the information, i.e.

Ip U 10 U Ca, because : the resulting selection index or selection rule will have maximum
accuracy ; the rank orders determined from IP U 10 U Ca and Ip U Ca will generally be
closer than those determined by 10 U Ca and IP U Ca-



In effect, we have argued that assortative mating is implemented to : create extreme
positive individuals ; arrange future pedigree information (in the attempt to create

extreme positive individuals). Therefore, an evaluation of assortative mating should at
least consider progeny selected by an index which includes information on all preassorted
relatives. With such a selection scheme SMITH & HAMMOND (1987) showed that the
relative efficiencies of assortative mating over random mating are significantly larger
than when mass selection is used. 

’

Mate selection, as a theoretical decision problem, can be very difficult. Concerns
about mating pairs and additivity imply a long term perspective. Whilst evaluating
expected utility or merit for the next generation is straightforward, extensions beyond
one generation are complicated. On the other hand, the practice of selection and
assortative mating seems to be relatively easy ; simply select and mate in accordance
to rank order of estimated merit. However, there are two practical concerns that could
cause problems for the intuitive approach, viz.

(1) Realistic constraints on the number of times an animal might be used in mating
(not used, once or several times) should be considered in a joint selection and mating
problem. We refer to these constraints as mating constraints.

(2) Additive merit is estimated with error and usually with unequal information.
A rational procedure that assigns a value to a particular mating combination is desired
and we cannot be sure that consideration of only estimated merits, whilst neglecting
the errors of estimation, is enough.

We do not attempt to design a complicated mate selection rule by considering an
extended planning horizon. Rather, we describe a simple mate selection rule that is
consistent with the salient features of associative mating. To mimic selection and assor-
tative mating, the Bayesian would define probability distributions for the additive merit
of potential progeny and identify those distributions that are regarded as desirable. The
more extreme and positive the progeny are likely to be the more desirable the distri-
butions.

For mate selection formulations of JANSEN & WILTON (1985) and SMITH & ALLAIRE

(1985), utility is assigned to individual mating combinations and summed over all combi-
nations in the selection alternative. Consider an objective function of the form

where x;! = 0 or 1 and Aij is additive merit (perhaps aggregate) for the progeny produced
by mating the i-th male, to the j-th female (or egg cell). The mate selection problem
is solved by finding those x;! such that (7) is maximum subject to mating constraints.
If x;! = 1 when the solution is found the i-th male is to be mated with the _j-th female.

In (7), f(A) is understood to be monotone increasing and thus consistent with
maximising additive merit. Because objective (7) represents a simple sum of contributions
from would be progeny, it is not good at quantifying risk (and in particular the risk
due to drift). Hence, it is necessary to place constraints (perhaps irrational) on x,, such as



where ni is the maximum number of times the i-th male can be mated ; and

where N is the number of progeny to be selected. The top constraints are needed as
it is typical for females to be mated once or not at all. It may be desired to avoid
certain mating combinations (denoted by the index set 0) because of inbreeding. These
types of constraints are enforced passively by subtracting a sufficiently large cost from
(7) when xij = 1 and i, j E O.

The mate selection problem can be solved by linear programming techniques (JANSEN
& WILTON, 1985) and problem (1) listed above can be accommodated.

Problem (2) can also be dealt with. Our development on previous mate selection
theory is the incorporation of (f’). If f(’) is monotone and convex, objective (7) places
a rational premium on extreme positive individuals ; mate selection is coupled with
positive assortative mating. If f(’) is monotone and concave mate selection induces the

negative assortative mating of selected parents. If f(’) is linear, no particular mating
combination is favoured within some feasible set. In addition to theses properties, the
strategy will assign a value to the variability of Aii depending on the curvature of f(’).
If f(’) is convex, then variability is favoured and this is desirable from a long-term
perspective (VAN RwDSN et al. (1984) made a similar arguement in a sire problem).

What kind of function should f(’) be? At the very least it should be monotone

increasing and if positive assortative mating is desired, convex. Numerous functions fit
these requirements but there is only one function, (5.3), that results in a decision rule
unaffected by location shifts (objective (7) can usually be represented as E[f(r)] where
r is a randomized reward). When the additive genetic mean is not well defined, use
of (5.3) is proposed. The objective function (7) would then be a sum of expectation
of functions like (5.3).

We give a brief illustration. Assume equal information so that variance terms can
be ignored and let f(’) = exp (’). It is desired to mate two males (MI, M2) to two
females (Fl, F2) so that all animals are mated once and objective (7) is maximum.
There are two selection alternatives : (Mi x Fl, M2 x F2) and (MI x Fz, M2 x FI). Let
the estimated merits be 1.1, 2.0, 1.5, 1.9 for Mi, M2, Fi and F2, respectively. Under
conditions of normality, (7) is proportional to

for (Mi x F2, M2 x F¡). Objective (7) is maximum when parents are mated assor-

tatively.



V. Discussion

We have investigated a component of portfolio theory and found it to be rational

provided certain assumptions are satisfied. As a side issue we described an interesting
way of viewing mate selection. Consideration of rationality, risk and information has
proven very useful.

In our formulation of mate selection, we have assumed that total utility can be
represented as a sum of utilities from individuals in the selected population. Moreover,
relationships among animals and concerns about risk have been ignored in the utility
function. This is tantamount to assuming that the selected population comprises an
infinite number of sufficiently unrelated animals. Lastly, we have assumed that loading
additive merits into extreme positive individuals is desirable. This is reasonable when
information is reused from generation to generation. In a multiple-trait setting, the
reuse of information may be critical because estimated merit is affected not just by
economic weights but by a complicated covariance structure. Mating parents assortatively
by an economic index will almost surely be suboptimal when information is not reused.
A different criterion of desirability one based on maximising accuracy of selection, was
given by FERNANDO & GIANOLA (1984) for the multiple-trait case. However, these
authors did not consider selection and mating together.

It is difficult to make general statements about mate selection using objective (7).
However, the proposal is amenable to simulation under various constraints (e.g. popu-
lation size and structure, level of information, selection pressure) and values of c in (5.3).

Objective (7) can be evaluated by use of mixed model methodology, as outlined
by SMITH & ALLAIRE (1985). Hence mate selection rules can accommodate unequal
information, selection or mating bias, fixed effects, etc. More importantly, mixed model
methodology allows the reuse of information in mate selection problems.
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Appendix

(a) Proof that objective (2) cannot equal expected utility
To show that (2) cannot equal expected utility we make an argument of contradic-

tion. Assume there exists a utility function, U*(r), such that

where the subscript p, in this case, signifies a probability distribution function for r.

Consider a hypothetical sequence of probability distribution functions, say P,, P2...,
such that

where the subscript pn represents an indexed distribution. We are assuming that the
set of allowable distributions [i.e., the set of distribution for which (2) applies] is rich



enough to include such a sequence for any real number x. If the set is not rich enough
then the use of (2) would be severely restricted and nothing else need be said. The
set of normal distributions is rich enough to include (Pl, P2...). It follows that

The limiting distribution, Pa, can be thought of as a function that assigns a

probability mass of one to r = x. Thus, with appropriate regularity conditions, the right
side of (8) can be equated to U*(x). Hence, we have shown that

and this is true for all x (in our formulation x is unspecified). However, for a general
distribution,

when k 4- 0. Thus, we have arrived at a contradiction.

(b) Proof that U+(r) is a linear or exponential function

First consider the case where P 4= 0 or 1 in (4). Equation (4) can be written as

Like (4), (9) holds for all r. Consequently, recursive application of (9) yields :

Now by definition

Applying the summation to the right side of (10) gives :

Thus, we have shown that U+(r + Nh) equals



depending on G(h). The derivation assumes N is a positive integer. However, identities
(11.1) and (11.2) hold when N is a non-positive integer as well. When N = 0 this is
obvious. To see the validity of (11.1) and (11.2) when N is negative, note that (9) implies

Recursive application of (12) yields

Summing both sides of (13) from n = 0 to n = N - 1 leads to identities (11.1) and
(11.2) where N is allowed to be negative. Furthermore, if P = 0 or 1, it is easy to
show that (11.1) holds where V(r, h) = 0.

Taking r = 0, we see that U+(Nh) is either a linear or exponential (with intercept)
function of the whole number N. Alternatively, U+(t) is a linear or exponential function
(say g(t)) if t E {Nh : N = 0, ± 1, ± 2,...} = 12 (h). When t E DNh* : N = 0, ± 1,
± 2, ...} = ft (h*) and h* =1= h, U+(t) is also a linear or exponential function (say g*(t)).
However, we cannot be sure that g*(t) = g(t). If h* = Kh, where K, is a rational

number, then there are an infinite number of points common to both SZ (h) and fl (h*).
In which case g*(t) = g(t) because U+(t) = g(t) = g*(t) if t E il (h) f1 S2 (h*) where
fl is the intersection operator. This implies U+(t) = g(t) if t E {Kh : K rational} = fl.
Assuming that U+(z) =1= g(z) for some z S2, leads to a contradiction. All neighbourhoods
of z contain points contained in S,2 Monotinicity of U+(’) implies

where z, < z < Z2 and zl, Z2 6 fl-

The upper and lower bonds in (14) can be made sharper and sharper thus inducing
the desired contradiction. This shows that U+(t) = g(t) for all t.

(c) Strong argument that suggests objective (2) implies normality

To suggest that r is treated as normal we will assume that use of objective (2) is
consistent with maximising expected utility. If this is not true, the portfolio approach
would be irrational and nothing else need be said. As objective (2) is unaffected by
location shifts the underlying utility function is almost certainly one of (5.1), (5.2) or
(5.3). Note first that when the utility function is linear [i.e., (5.2)] normality need not
hold ; expected utility involves only the mean and this result is independent of the
distribution. Thus, the distribution of r is only an issue when the utility function is

exponential [i.e., (5.1) or (5.3)].
If maximising objective (2) is equivalent to maximising expected utility (EU), then

there must be some function of EU, a, b and c [say f(EU, a, b, c)] that equals objective
(2) [recall a, b and c come from (5.1) or (5.3)]. The functional form of f is independent
of the distribution of r. However, it must be that maximising f is equivalent to maximising
EU. To proceed further we must determine f.

As with part a) of the Appendix we will use a sequence of probability distribution
functions, say PI, P2&dquo;’, such that



We assume that the set of allowable distributions is rich enough to include such a
sequence for any real number x. Moreover, we assume that f is a continuous function
of EU. When the utility function equals (5.3) [a similar argument can be made when
utility equals (5.1)] the limiting value of EU is

The limiting value of f or objective (2) is x. It follows that f is defined implicity
for all x by

and this implies

Note that (EU - a)/b is the moment generating function {i.e., E[exp(cr)]} for r. Equa-
ting f to (2) we obtain

where M and V are the mean and variance of r, respectively. To prove normality it
suffices to show that k = lhc. We know only that k is a function of c[say k(c)].

We will now assume that if r is a member of the class of allowable distributions
so is tr where t is any positive constant. The mean and variance of tr are

tM and t2V.

Thus, the moment generating function given by (15) is

If we devine c* = ct, from (15) we obtain

where k* = k(ct). Equating (16) and (17) shows that

ck(c)t2 = ctk(ct)
and setting c = 1 yields k(t) = k(I)t. That is, k(t) [or k(c)] is proportional to t (or c).
As the log of (15) must be a legitimate cumulant generating function it follows that

k(c) = ! c.


